Strongly exposed points in Lebesgue-Bochner function spaces
نویسندگان
چکیده
منابع مشابه
The near Radon-nikodym Property in Lebesgue-bochner Function Spaces
Let X be a Banach space and (Ω,Σ, λ) be a finite measure space, 1 ≤ p < ∞. It is shown that L(λ,X) has the Near Radon-Nikodym property if and only if X has it. Similarly if E is a Köthe function space that does not contain a copy of c0, then E(X) has the Near Radon-Nikodym property if and only if X does.
متن کاملStrong Barrelledness Properties in Lebesgue-Bochner Spaces
If (Ω,Σ, μ) is a finite atomless measure space and X is a normed space, we prove that the space Lp(μ,X), 1 ≤ p ≤ ∞ is a barrelled space of class א0, regardless of the barrelledness of X. That enables us to obtain a localization theorem of certain mappings defined in Lp(μ,X). By “space” we mean a “real or complex Hausdorff locally convex space”. Given a dual pair (E,F ), as usual σ(E,F ) denotes...
متن کاملOn the Extreme Points and Strongly Extreme Points in Köthe–bochner Spaces
We give the necessary conditions of extreme points and strongly extreme points in the unit ball of Köthe–Bochner spaces. The conditions have been shown to be sufficient earlier.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1994
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1994-1176069-3